## +3-IV-S-CBCS-Arts/Sc/Com(H&P)-AECC-E&V-IV(R&B)

## 2025

Time: As in Programme

Full Marks: 25

The figures in the right-hand margin indicate marks.

Answer all the questions

## PART-I

Answer all questions
 ସମୟ ପ୍ରଶ୍ୱର ଉତ୍ତର ଦିଅ ।
 a. Education for character building.
 ଚରିତ୍ର ଗଠନରେ ଶିକ୍ଷାର ଭୂମିକା ।
 b. Ragging as a cause of mental trauma.

ରାଗିଂ ମାନସିକ ଆଘାତର ଏକ କାରଣ l

c. Define plagiarism. ପ୍ଲାଗିଆରିଳ୍ମର ସଂଜ୍ଞା ଲେଖ ।

d. What is Positive friendship?ସକାରାତ୍ନକ ବନ୍ଧୁତ୍ୱ କ'ଣ ?

e. Define co-curricular activities. ସହଗ–ପାଠ୍ୟକ୍ରମର ସଂଜ୍ଞା ଲେଖ ।

## **PART-II**

2.Answer any five of the following questions.2x5ନିମ୍ନଲିଖିତ ପ୍ରଶ୍ନଗୁଡ଼ିକ ମଧ୍ୟରୁ ଯେକୌଣସି ପାଞ୍ଚଟି ପ୍ରଶ୍ନର ଉତ୍ତର ଲେଖ ।

a. Explain, "Failed in examination but passed life". "ପରୀକ୍ଷାରେ ଅକୃତକାର୍ଯ୍ୟ, ଜୀବନରେ କୃତକାର୍ଯ୍ୟ" – ବୁଝାଅ ।

b. What is cognitive-behavioural counselling ? ଜ୍ଞାନାତ୍ନକ-ବ୍ୟାବହାରିକ ପରାମର୍ଶି କ'ଣ ? (Turn Over)

E&V-001(2)

- c. Major conflicts among college students. ମହାବିଦ୍ୟାଳୟ ଛାତ୍ରମାନଙ୍କର ପ୍ରମୁଖ ଦ୍ୱନ୍ଦ ।
- d. Hostel life as independent but responsible. ଛାତ୍ରାବାସ ଜୀବନ ସ୍ୱାଧୀନ କିନ୍ତୁ ଦାୟିତ୍ୱପୂର୍ଷ ।
- e. Teacher-student relationship. ଗୁରୁ-ଶିଷ୍ୟଙ୍କ ସମ୍ପର୍କ ।
- f. Define leadership. ନେତୃତ୍ୱର ସଂଜ୍ଞା ଲେଖ ।
- g. Benefits of co-curricular activities for students. ଛାତ୍ରମାନଙ୍କ ପାଇଁ ସହଗ–ପାଠ୍ୟକ୍ରମର ଉପାଦେୟତା ।

- Answer any two of the following questions.
   ନିମ୍ବଲିଖିତ ପ୍ରଶ୍ନଗୁଡ଼ିକ ମଧ୍ୟରୁ ଯେକୌଣସି ଦୁଇଟି ପ୍ରଶ୍ନର ଉତ୍ତର ଦିଅ ।
  - a. "Knowledge is power" Explain with examples. "ଜ୍ଞାନ ହିଁ ଶକ୍ତି" ଉଦାହରଣ ସହ ଆଲୋଚନା କର ।
  - b. "Violence vs. Peaceful protest" Give your debate. "ହିଂସା ବନାମ ଶାନ୍ତିପୂର୍ଷ ଓ ପ୍ରତିବାଦ" ବିତର୍କ ଲେଖ ।
  - c. "Cheating in examinations is cheating yourself". Explain. "ପରୀକ୍ଷାରେ ଠକିବା ନିଜକୁ ଠକିବା ସହ ସମାନ" ଆଲୋଚନା କର ।
  - d. "Positive interpersonal relation is the strength of life". Explain. "ସକାରାତ୍ସକ ପାରସ୍କରିକ ସମ୍ପର୍କ ଜୀବନର ଶକ୍ତି" ଆଲୋଚନା କର ।
  - e. Describe scope of leadership for college students. ମହାବିଦ୍ୟାଳୟ ଛାତ୍ରମାନଙ୍କର ନେତୃତ୍ୱ ନେବାର ସୁଯୋଗଗୁଡ଼ିକୁ ବର୍ତ୍ତନା କର ।



5x2

# +3-IV-S-CBCS(MS)-Sc(H)-GE-2.2-Chem-R&B

# 2025

Time: As in Programme

Full Marks: 60

The figures in the right-hand margin indicate marks.

Answer all questions.

## **PART-I**

| 1. | Ansv | wer all Questions. 1x8                                                                                 |
|----|------|--------------------------------------------------------------------------------------------------------|
|    | a.   | The heat of neutralisation of 1 mole of strong acid in dilute solution with one mole of strong base is |
|    | b.   | What happens to the entropy of spontaneous process.                                                    |
|    | c.   | pH of pure water with rise of temperature.                                                             |
|    | d.   | The solubility of CaF <sub>2</sub> is 3.2 x 10 <sup>-11</sup> M <sup>3</sup> , its solubility is       |
|    |      |                                                                                                        |
|    | e.   | What is the product when benzene reacts with chlorine in the sun light?                                |
| ,  | f.   | Phenol when heated with Zn produces                                                                    |
|    | g.   | What is the electrophile in Friedel Craft alkylation reaction?                                         |
|    | h.   | Which types of aldehyde undergo aldol condensation reaction?                                           |
|    |      |                                                                                                        |

(Turn Over)

CHE-213(4)

- 2. Answer any eight within two to three sentences 1.5x8
  - a. Define an isolated system?
  - b. What is Gibb's Helmholtz equation?
  - c. Explain why cloths dry quicker when there is breeze.
  - d. Why pH of solution of potassium acetate is more than 7?
  - e. Define solubility product.
  - f. What is nitrating mixture?
  - g. Give one example each of o- &p- directing and m-directing group.
  - h. Between benzene and toluene which is more reactive towards electrophilic substitution reaction and why?
  - i. How could you distinguish between Butan-2-one and butan-3-one?
  - j. Explain why boiling point of dimethyl ether is lower than that of ethyl alcohol.

## **PART-III**

- 3. Answer any eight of the following (in maximum 75 words.) 2x8
  - a. Calculate the heat of reaction of the following reaction.

$$CH_4(g) + 4F_2(g) \to CF_4(g) + 4HF(g)$$

Bond energy of C-H, F-F, C-F and H-F bonds are 415.5, 159.5, and 564.8 kj/mol respectively.

- b. What would happen to a reversible reaction at equilibrium when
  - (i) Temperature is raised, given that its  $\Delta H$  is +ve
  - (ii) Pressure is lowered given that  $\Delta n$  is +ve.
- c. Why zinc sulphide is precipitated by H<sub>2</sub>S from solution of zinc acetate but not solution of zinc chloride?
- d. What happens when HCl gas is passed through a saturated solution of barium chloride?
- e. Calculate the pH of 10<sup>-8</sup> M HCl.
- f. Write the mechanism of chlorination of benzene.
- g. How can you prepare acetophenone from benzene?
- h. What is Fehling solution? How does it react with aldehyde?
- i. How can you prepare benzaldehyde by Etard's reaction?
- j. Give the reaction of phenol with CHCl<sub>3</sub> in presence of aq.NaOH.

#### **PART-IV**

Answer within 500 words each.

6x4

4. State and explain Hess's law of constant heat summation.

Discuss its application.

4+2

#### OR

Define Le Chatrlier's principle and how is it applied in manufacture of ammonia?

2+4

(3)

(Turn Over)

5. What do you meant by Hydrolysis of salt? Predict whether the aqueous solution of sodium carbonate will be acidic, neutral or alkaline, Explain why?

2+4

### OR

Write a note on buffer solution. A 0.1 MHCN solution contained 0.2 mole KCN per litre of solution. Calculate the  $[H^+]$  of the solution  $(K_a \text{ of HCN} = 7.2 \times 10^{-10})$  4+2

- 6. a. How benzene is prepared from acetylene? How does it reat with 2+2+2
  - (i) Cl<sub>2</sub> in presence of AlCl<sub>3</sub> (ii) Conc. H<sub>2</sub>SO<sub>4</sub>.

### OR

- b. Write notes on : (i) Sandmeyer's reaction (ii) Huckel's rule 4+2
- 7. How you can prepare acetaldehyde from ethyl alcohol? What happens when acetaldehyde reacts with 2+2+2
  - a. CH<sub>3</sub>MgBr (ii) H<sub>2</sub>O/H<sup>+</sup>
  - b. Phenyl Hydrazine?

### OR

How Primary, Secondary and Tertiary Alcohols can be distinguished by Lucas test? What happens when excess of ethyl alcohol is heated with conc. H<sub>2</sub>SO<sub>4</sub> at 140°C.



# +3-IV-S-CBCS(MS)-Arts/Sc(H)-Core-VIII-Maths-R&B

# 2025

# Time: As in Programme

Full Marks: 60

The figures in the right-hand margin indicate marks.

Answer all questions.

## PART-I

| 1.         | Ansv | wer all Questions.                                                                                                     |  |
|------------|------|------------------------------------------------------------------------------------------------------------------------|--|
|            | a.   | If 'x' is the true value and 'a' be an approximation to $x$ then relative error is                                     |  |
|            | b.   | Suppose the number 0.025 is approximated by 0.02. Find percentage error.                                               |  |
|            | c.   | In Gauss Jordan method system of equation AX=b reduces to DX=b where D is matrix.                                      |  |
|            | d.   | Why Newton - Raphson method is superior to bisection method for finding the numerical solution of non linear equation? |  |
|            |      |                                                                                                                        |  |
|            | e.   | The interpolating polynomial $P(x)$ that interpolate $f(x)$ at $x_0, x_1 \dots x_n$ is at most degree                  |  |
|            | f.   | Write the relation between forward difference operator and the shift operator.                                         |  |
|            |      | $oldsymbol{b}$                                                                                                         |  |
|            | g.   | The mid point rule formula for $\int_a^b f(x)dx = $                                                                    |  |
|            | h.   | Write trapezoidal rule with error term.                                                                                |  |
| MAT-223(4) |      |                                                                                                                        |  |
|            |      |                                                                                                                        |  |
|            |      |                                                                                                                        |  |

2. Answer any eight questions.

1.5x8

- a. Round off the number 0.000455 correct upto three significant figures.
- b. Find the interval in which the root of equation  $x^2=3$  lies.
- c. Write iteration function to find the root of the equation  $x^3+x^2-1=0$  using fixed point iteration method.
- d. Write the system of equation in AX=b form to find A, X and b:
- e. Show that divided difference of a constant is zero.
- f. Write Lagrange's Polynomial li(x) at (n+1) distinct points  $x_0, x_1, ... x_n$  and write its properties.
- g. What is the difference between Gaussian elimination method and Gauss. Jordan elimination method for solving system of linear equations?
- h. Write Newton cotes Quadrature formula involving (n+1) nodes  $x_0, x_1, \dots x_n$  with  $W_1 x_0 = x_0 + \alpha h$ .  $0 \le \alpha \le h$
- i. Define extrapolation.
- j. Write composite formula for Simpson's  $\frac{1}{3}$  Rule  $a=x_0 < x_1$ ...  $< x_{2n-1} < x_{2n} = b$  and it's error team.

## **PART-III**

3. Answer any eight of the following questions.

2x8

- a. Perform four iteration to find an approximation to  $x^2=3$  using bisection method.
- b. Using 5 digits floating point arithmetic, find the product

of 
$$\frac{1}{3}$$
 and  $\frac{5}{7}$ .

MAT-223(4)

(2)

(Contd.)

- c. Derive formula for Newton Raphson method to find approximation to root of f(x) = 0
- d. Find the eigen values of  $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ .
- e. Solve the equation by Gauss Jordan method, x + y = 0, y+z = 1, x + z = 3.
- f. Is Pivoting always necessary for solving system of linear algebraic equations? Justify your answer.
- g. Show that  $\mu^2 = 1 + \frac{\delta^2}{4}$ .
- h. Show that  $\delta = \nabla (1 \nabla)^{\frac{1}{2}}$
- i. Derive Simpson's  $\frac{1}{3}$  rule for  $x_0 = a$ ,  $x_1 = \frac{a+b}{2}$ ,  $x_2 = b$  and n=2.
- j. Given the following values of  $f(x)=\ln x$ . Find the approximate value of f'(2.0) using linear interpolation.

### **PART-IV**

Answer all questions.

6x4

4. Find the smallest positive root of the equation  $x^3-5x+3=0$  by Newton Raphson method by taking four iterations.

OR

Find the approximate root correct upto two decimal places of equation  $x^2=3by$  Secant method.

MAT-223(4) 
$$2.06640$$
 (3)  $34.38$  (Turn Over)  $34.328/$   $4.2910$  (3.25)  $2.0664$ 

5. Find the inverse of the co-efficient matrix of the system.

$$\begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix}$$
by

Gauss - Jordan method with partial Pivoting and hence solve the system.

## OR

If A is strictly diagonally dominant matrix, then show that the Gauss-Seidel iteration Scheme Converges for any initial Starting vector.

6. From table of Logarithm find interpolating polynomial of  $\log x$  and find  $\log 1.25$  by Newton Divided Difference.

## OR

Derive Newton forward difference interpolating polynomial of f(x) at  $x_0 = a$ ,  $x_1 \dots x_n = b$ ,  $x_1 = x_0 + ih$ .

7. Derive Newton - Cotes rules and find its error.

## OR

Using six intervals of equal length, obtain the approximate value

of 
$$\int_{0}^{1} \frac{dx}{1+x}$$
 by Simpson's  $\frac{1}{3}$  rule.



## +3-IV-S-CBCS(MS)-Arts/Sc(H)-Core-X-Maths-R&B

## 2025

Time: As in Programme

Full Marks: 80

The figures in the right-hand margin indicate marks.

Answer all questions.

**PART-I** 1. Answer all Questions. 1x12 Write the characteristics of Ring R. a. Is  $Z \oplus Z$  is an integral domain? (Yes/No). b. The polynomial  $x^2+1$  is reducible over C. d. Is the mapping  $Z_5$  to  $Z_{30}$  given by  $x \rightarrow 6x$  a ring homomorphism? (Yes/No) Give an example of integral domain which is not UFD. e. f. The characteristic of an integral domain is a prime only. (True/false)  $\{2,0,4\}$  is a subring of the ring  $Z_6$ , the integers of modulo g. 6. (True/false) If the leading coefficient of a Polynomial  $f(x) \in R[x]$ h. is the multiplecative identity of R[x] then f(x) is called Polynomial. Is the Polynomial  $f(x)=2x^2+4$  irreducible over Z? Yes/ i. no. j.  $f(x)=x^2+1$  has zero in  $Z_3$  (True/false) Is the ring Z is a Euclidean domain? (Yes/no) k. Find the idempotent in  $Z_{10}$ . 1.

MAT-225(4)

(Turn Over)

2. Answer any eight questions.

2x8

- a. Let  $a \in a$  ring R, prove that 0a=a0=0.
- b. If R has a Unity element 1, then prove that (-1)a=-a.
- c. Define a field.
- d. When an integral domain is send to be a Unique factorization domain?
- e. Define Kernel of a ring homomorphism R.
- -f. Show that R, the set of real numbers is a subring of C.
- g. Define principal Ideal domain.
- h. Find all maximal ideals of  $Z_8 \oplus Z_{30}$ .
- i. Define associates of an integral domain.
  - j. Define Unique Factorization domain.

## **PART-III**

3. Answer any eight of the following questions.

3x8

- a. If  $a, b \in R$ , Prove that (-a)(-b)=ab where R is a ring.
- b. If  $\phi$  is a homomorphism of a ring R into a ring R with Kernel S, then show that S is an ideal of R.
- % c. Find all units, zero divisor, idempotents and nilpotent elements in  $Z_3 \oplus Z_6$ .
- d. Let F be a field. If  $f(x) \in F[x]$  and deg f(x)=2 or 3, then prove that f(x) is reducible over F iff f(x) has a zero in F.
  - e. Prove that  $\phi: x \to 5x$  from  $Z_4$  to  $Z_{10}$  is a ring homomorphism.
  - f. Explain why every subgroup of  $Z_n$  under addition is also a subring of  $Z_n$ ?
  - g. List all the Polynomials of degree 2 in  $Z_2[x]$  which of these are equal as functions from  $Z_2$  to  $Z_2$ .

(2)

(Contd.)

- h. Give an example of commutative ring that has a maximal ideal but is not a prime ideal.
  - i. Prove that every Euclidean domain is a principal ideal domain.
  - j. Show that 1-i is an irreducible in Z[i].

#### **PART-IV**

Answer all questions.

7x4

4. Define integral domain and prove that a finite integral domain is a field. Is the converse true?

## OR

Let  $a \in a \text{ ring } R$ . Let  $S = \{x \in R : ax = 0\}$ . Show that S is a subring of R.

5. Let  $\phi$  be a ring homomorphism from a ring to a ring to S. Then Ker  $\phi = \{r \in R : \phi(x) = 0\}$  is an ideal of R.

### OR

- Let R be a commulative ring with unity and A be an ideal of R.

  Then prove that R/A is a field iff A is maximal.
- 6. State and prove Division algorithm for F[x].

## OR

- Let  $f(x) \in z[x]$ . if f(x) is reducible over Q, then prove that it is reducible over Z.
- 7. Prove that in a principal ideal domain, an element is an irreducible iff it is a prime.

#### OR

Let P(x) is an irreducible polynomial over a field F. Prove that the ideal generated by P(x) in F(x) is a maximal ideal.



## +3-IV-S-CBCS(MS)-Arts/Sc(H)-Core-IX-Maths-R&B

## 2025

Time: As in Programme

Full Marks: 80

The figures in the right-hand margin indicate marks.

Answer all questions.

## **PART-I**

1. Answer all Questions.

1x12

- a. What is the derived set of set  $A = \{1/n : n \in N\}$  in Euclidean Metric space?
- b. Let X be a nonempty set and d on X defined by  $d(x, y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$ , then d is called \_\_\_\_\_ metric.
- c. What can be said about Uniform continuity of the function  $f: R_U \to R_U$  defined by  $f(X)=X^2$ ?
- d. Any subspace of a second countable space is also second countable. (True/False)
- e. What can you say about the continuous image of a connected space?
- f. Is  $Y = \{x \in R : 1 < x < 2\}$  dense in R? (Yes / No)

(Turn Over)

$$a = \left\{ (x, y) \in R^2, Y = \frac{1}{x} \neq 0 \right\} \text{ and }$$

$$b = \left\{ (x, y) \in R^2, Y = 0 \right\} \text{ is }$$

$$b = \left\{ (x, y) \in R^2, Y = 0 \right\} \text{ is }$$

- h. A composition of two uniformly continuous mapping is again Uniformly continuous. (True/False)
- i. Let  $A = \phi$  and B = R then  $A^0 \cup B^0 = \underline{\hspace{1cm}}$ .
- j. The Singleton set  $\{x\}$  on any metric space x is connected. (True/false)
- k. A totally bounded metric space is also bounded. True or false.
- l. In a metric space, any two disjoint sets are always separated. Write true or false.

2. Answer any eight questions.

2x8

- a. Define Euclidean metric on R<sup>n</sup>.
- b. Let (X:d) be a metric space and  $x \in X$ , then define local base at X.
- c. Define a Cauchy sequence in a metric space.
- d. Define compact metric space.
- e. Is the subset  $\{3n+1, n \in z\}$ ,  $\{3n, n \in z\}$  and  $\{3n+2, n \in z\}$  forms an open cover of z. Explain.
- f. Define the local base of an element X in a Metric Sapce (X,d).
- g. Let (X,d) be a metric space and A, B be subsets of X. Show that  $A \subseteq B \Rightarrow A^0 \subseteq B^0$ .
- h. Define Isometric functions.

(2)

(Contd.)

- i Define Pseudo-Metric space.
- j. Let X be a complete space. Then does the mapping  $T:X \to X$  have a fixed point? Justify.

al(20,2)(7) 3. Answer any eight of the following questions.

3x8

- a. Prove that the Cauchy Sequence of real numbers is convergent.
- b. Prove that in any metric space (x,d) each open ball is an open set.
- c. If (X, dx), (Y, dy) and (Z, dz) are metric spaces and if  $f:X \to Y$  and  $g:Y \to Z$  are continuous, then prove that  $gof: X \to Z$  is also continuous.
- d. Prove that in any metric space, there is a countable base at each point.
- e. Prove that two metrics d<sub>1</sub> and d<sub>2</sub> on a non-empty set X are equivalent if there exists a constant K such that

$$\frac{1}{k}d_2(x, y) \le d_1(x, y) \le kd_2 \ (x, y), \forall x, y \in X.$$

- f. Show that  $f: R \to (-1,1)$  defined by  $f(x) = \frac{x}{1+|x|}$  is a homomorphism.
- g. Let (X,d) be a metric space and A, B be subsets of X. Then prove that  $(A \cup B)^0 \supseteq A^0 \cup B^0$
- h. Let  $f(x) = \sin\left(\frac{1}{x}\right), x \in R \{0\}$ . Prove that the function f can't be extended to a continuous function on R.
- i. If  $X = Y_1 \cup Y_2$  and  $Y_1$  is of category I while X is of category II, then prove that  $Y_2$  must be category II.

j. Let  $f:[-1,1] \rightarrow [-1,1]$ . show that there is a fixed point  $C \in 1$  such that f(C)=C.

### PART-IV

Answer all questions.

7x4

2300

4. Prove that the space  $l^p$  is complete.

#### OR

State and prove Cantor's theorem.

5. Let  $T:X \to X$  be a contraction of the complete metric space (X,d), then prove that T has a unique fixed point.

### OR

- Let (X,d) be a metric space. Then prove that the following statements are equivalent.
  - i. (X,d) is disconnected
  - ii. There exist a continuous mapping of (X,d) onto the discrete two element space  $(X_0, d_0)$
- 6. Prove that  $f: X \to Y$  is continuous on X iff  $f^{-1}(G)$  is open in X for all open subsets G and Y.

#### OR

 $\checkmark$  Show that the sequence  $\{f_n\}_{n\geq 1}$  defined by

 $f_n(x) = \tan^{-1}(nx), x \ge 0$  is uniformly convergent on  $[\alpha, \infty)$  when  $\alpha > 0$ , but not uniformly convergent on  $[0, \infty)$ .

7. If f and g are two continuous maps on a metric space (X,d) then using  $\varepsilon - \delta$  method prove that f+g and fg are continuous on X.

#### OR

Prove that in a metric space, every convergent sequence has a Unique limit.

